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Helicity Basis and Parity

Valeri V. Dvoeglazov1

Received

We study the theory of the (1/2,0) ⊕ (0,1/2) representation in helicity basis. Helicity
eigenstates are not the parity eigenstates. This is in accordance with the consideration
of Berestetskiı̆, Lifshitz, and Pitaevskiı̆. Relations to the Gelfand-Tsetlin-Sokolik-type
quantum field theory are discussed. Finally, a new form of the parity operator is proposed.
It commutes with the Hamiltonian.

KEY WORDS: helicity basis; parity; Gelfand–Tsetlin–Sokolik-type quantum field
theory; Lorentz group representations.

Recently we generalized the Dirac formalism (Ahluwalia, 1996; Barut and
Ziino, 1993; Dvoeglazov, 1997a,b, 2000, 2002a; Gupta, 1967; Ziino, 1989, 1991,
1996) and the Bargmann-Wigner formalism (Dvoeglazov, 2001, 2002b), and on
this basis we proposed a set of 12 equations for antisymmetric tensor (AST) field;
some of them may lead to parity-violating transitions. In this paper we are going to
study somewhat related matter, the transformation from the standard basis to the
helicity basis in the Dirac theory. The spin basis rotation changes the properties
of corresponding states with respect to parity. The parity is a physical quantum
number; so, we try to extract corresponding physical contents from considerations
of the various spin bases.

Briefly, I repeat the results of Dvoeglazov (2002b,c). One can find solutions of
the 2(2J + 1)-theory with different parity properties (Dvoeglazov, 2002c). They
can be related to the polarization vectors obtained by Ruck and Greiner (1977),
who found the helicity states of the 4-vector potential on the basis of the Jackob
and Wick paper (Jackob and Wick, 1959). Next, I used the generalized Bargmann-
Wigner formalism based on the equations2

[iγµ∂µ + ε1m1 + ε2m2γ5]αβ�βγ = 0, (1a)

1 Universidad de Zacatecas, Apartado Postal 636, Suc. UAZ, Zacatecas 98062, Zac., México; e-mail:
valeri@ahobon.reduaz.mx.

2 The parity-violating Dirac equation has been derived in (Dvoeglazov, 2000, 2002a). The method
of the derivation refers to the van der Waerden, Sakurai, and Gersten works, see references in the
previous papers of mine.
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[iγµ∂µ + ε3m1 + ε4m2γ5]αβ�γβ = 0, (1b)

Different equations for the antisymmetric tensor field follow from this set by means
of the standard procedure (Luriè, 1968). We concluded in Dvoeglazov (2002b) in
part that (1) in the (1/2, 0) ⊕ (0, 1/2) representation it is possible to introduce the
parity-violating frameworks; (2) the mappings between the Weinberg–Tucker–
Hammer formalism for J = 1 and the AST fields of the 2nd rank of, at least,
eight types exist; four of them include both Fµv and F̃µv , which tells us that the
parity violation may occur during the study of the corresponding dynamics; (3) if
we want to take into account the J = 1 solutions with different parity properties,
the Bargmann–Wigner (BW) formalism is to be generalized; (4) the 4-potentials
and the fields in the helicity basis can be constructed; they have different parity
properties comparing with the standard (“parity”) basis; (5) generalizing the BW
formalism in such a way, 12 equations for the AST fields have been obtained; (6)
finally, a hypothesis was proposed therein that the obtained results are related to
the spin basis rotations and to the choice of normalization.

Beginning the consideration of the helicity basis, we observe that it is well
known that the operator Ŝ3 = σ3/2 ⊗ I2 does not commute with the Dirac Hamilto-
nian unless the 3-momentum is aligned along with the third axis and the plane-wave
expansion is used:

[Ĥ, Ŝ3] = (γ 0γ k × ∇i )3 (2)

Moreover, Berestetskiı̆, Lifshtz and Pitaevskiı̆ wrote (Berestetskiı̆ et al., 1982):
“. . . the orbital angular momentum l and the spin s of a moving particle are not
separately conserved. Only the total angular momentum j = l + s is conserved.
The component of the spin in any fixed direction (taken as z-axis is therefore
also not conserved, and cannot be used to enumerate the polarization (spin) states
of moving particle.” The similar conclusion has been given by Novozhilov in his
book (Novozhilov, 1975). On the other hand, the helicity operatorσ · p̂/2 ⊗ I , p̂ =
p/|p|, commutes with the Hamiltonian (more precisely, the commutator is equal
to zero when acting the one-particle plane-wave solutions).

So, it is a bit surprising, why the 4-spinors have been studied so well when
the basis was chosen in such a way that they are eigenstates of the Ŝ3 operator:
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and, oppositely, the helicity basis case has not been studied almost at all (see,
however, Jackob and Wick, 1959; Novozhilov, 1975). Let me remind that the
boosted 4-spinors in the “common-used” basis are
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p± = E ± pz , pr,l = px ± i py . They are the parity eigenstates with eigenvalues
of ±1. In the parity operator the matrix{

γ0 =
(

0 11
11 0

)}
is used.

Let me turn now your attention to the helicity spin basis. The 2-eigenspinors
of the helicity operator

1

2
σ · p̂ = 1

2

(
cos θ sin θ e−iφ

sin θ e+iφ − cos θ

)
(5)

can be defined as follows (Varshalovich et al., 1988; Dvoeglazov, 1997c):
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for ±1/2 eigenvalues, respectively.
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We start from the Klein-Gordon equation, generalized for describing the
spin-1/2 particles (i. e., two degrees of freedom); c = h = 1:

(E + σ · p)(E − σ · p)φ = m2φ. (7)

It can be rewritten in the form of the set of two first-order equations for 2-spinors.
Simultaneously, we observe that they may be chosen as eigenstates of the helicity
operator which is present in (7):3

(E − (σ · p))φ↑ = (E − p)φ↑ = mχ↑, (8a)

(E + (σ · p))χ↑ = (E + p)χ↑ = mφ↑, (8b)

(E − (σ · p))φ↓ = (E + p)φ↓ = mχ↓, (8c)

(E + (σ · p))χ↓ = (E − p)χ↓ = mφ↓. (8d)

If the φ spinors are defined by the equation (6) then we can construct the corre-
sponding u- and v-4-spinors4
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 , (10a)

3 This opposes to the choice of the basis (3), where 4-spinors are the eigenstates of the parity operator.
4 One can also try to construct yet another theory differing from the ordinary Dirac theory. The 4-spinors

might be not the eigenspinors of the helicity operator of the (1/2, 0) ⊕ (0, 1/2) representation space
(cf. Ahluwalia, 1996; Dvoeglazov, 1997a; Gupta, 1967). They might be the eigenstates of the chiral
helicity operator introduced in Gupta (1967). In this case, the momentum–space Dirac equations can
be written (cf. Dvoeglazov, 1997a,b)

pµγ µU↑ − mU↓ = 0, (9a)

pµγ µU↓ − mU↑ = 0, (9b)

pµγ µV↑ + mV↓ = 0, (9c)

pµγ µV↓ + mV↑ = 0. (9d)

Here ↑↓ refers already to the chiral helicity eigenstates, e.g. uη = 1√
2

(
Nφη

N−1φ−η
).
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where the normalization to the unit (±1) was used:5

ūλuλ′ = δλλ′ , v̄λvλ′ = −δλλ′ , (11a)

ūλ′vλ′ = 0 = v̄λuλ′ (11b)

One can prove that the matrix

P = γ 0 =
(

0 11

11 0

)
(12)

can be used in the parity operator as well as in the original Dirac basis. Indeed,
the 4-spinors (10a,10b) satisfy the Dirac equation in the spinorial representation
of the γ -matrices (see straightforwardly from (7)). Hence, the parity-transformed
function � ′(t , −x) = P�(t , x) must satisfy

[iγ µ∂ ′
µ − m]� ′(t , −x) = 0, (13)

with ∂ ′
µ = (∂/∂t , −∇i ). This is possible when P−1γ 0 P = γ 0 and P−1γ i

P = −γ i . The matrix (12) satisfies these requirements, as in the textbook case.
Next, it is easy to prove that one can form the projection operators

P+ = +
∑

λ

uλ(p)ūλ(p) = pµγ µ + m

2m
, (14a)

P− = −
∑

λ

vλ(p)v̄λ(p) = m − pµγ µ

2m
, (14b)

with the properties P+ + P− = 1 and P2
± = P±. This permits us to expand the

4-spinors defined in the basis (3) in linear superpositions of the helicity basis
4-spinors and to find corresponding coefficients of the expansion:

uσ (p) = Aσλuλ(p) + Bσλvλ(p), (15a)

vσ (p) = Cσλuλ(p) + Dσλvλ(p). (15b)

5 Of course, there are no any mathematical difficulties to change it to the normalization to ±m, which
may be more convenient for our study of the massless limit.
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Multiplying the above equations by ūλ′, v̄λ′ and using the normalization con-
ditions, we obtain Aσλ = Dσλ = ūλuσ , Bσλ = Cσλ = −v̄λuσ . Thus, the transfor-
mation matrix from the common-used basis to the helicity basis is(

uσ

vσ

)
= U

(
uλ

vλ

)
, U =

(
A B

B A

)
(16)

Neither A nor B are unitary:

A = (a++ + a+−)(σµaµ) + (−a−+ + a−−)(σµaµ)σ3, (17a)

B = (−a++ + a+−)(σµaµ) + (a−+ + a−−)(σµaµ)σ3, (17b)

where

a0 = −i cos(θ/2) sin(φ/2) ∈ �m, a1 = sin(θ/2) cos(φ/2) ∈ �e, (18a)

a2 = sin(θ/2) sin(φ/2) ∈ �e, a3 = cos(θ/2) cos(φ/2) ∈ �e, (18b)

and

a++ =
√

(E + m)(E + p)

2
√

2m
, a+− =

√
(E + m)(E − p)

2
√

2m
, (19a)

a−+ =
√

(E − m)(E + p)

2
√

2m
, a−− =

√
(E − m)(E − p)

2
√

2m
(19b)

However, A†A + B†B = 11, so the matrix U is unitary. Please note that this matrix
acts on the spin indices (σ, λ), and not on the spinorial indices; it is 4 × 4 matrix.
Alternatively, the transformation can be written:

uα
σ = [

Aσλ ⊗ Iαβ + Bσλ ⊗ γ 5
αβ

]
uβ

λ , (20a)

vα
σ = [

Aσλ ⊗ Iαβ + Bσλ ⊗ γ 5
αβ

]
vβ

λ . (20b)

We now investigate the properties of the helicity-basis 4-spinors with respect
to the discrete symmetry operations P, C, and T. It is expected that λ → −λ under
parity, as Berestetskiı̆, Lifshitz, and Pitaevskiı̆ claimed (Berestetskiı̆ et al., 1982).6

With respect to p → −p (i. e., the spherical system angles θ → π − θ , ϕ → π +
ϕ) the helicity 2-eigenspinors transform as follows: φ↑↓ ⇒ −iφ↓↑. Hence,

Pu↑(−p) = −iu↓(p), Pv↑(−p) = +iv↓(p), (21a)

Pu↓(−p) = −iu↑(p), Pv↓(−p) = +iv↑(p). (21b)

Thus, on the level of classical fields, we observe that the helicity 4-spinors trans-
form to the 4-spinors of the opposite helicity.

6 Indeed, if x → −x, then the vector p → −p, but the axial vector S → S, that implies the above
statement.
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Under the charge conjugation operation we have:

C =
(

0 �

−� 0

)
K. (22)

Hence, we observe

Cu↑(p) = −v↓(p), Cv↑(p) = +u↓(p), (23a)

Cu↓(p) = +v↑(p), Cv↓(p) = −u↑(p). (23b)

due to the properties of the Wigner operator �φ∗
↑ = −φ↓ and �φ∗

↓ = +φ↑. For
the CP (and PC) operation we get:

CPu↑(−p) = −PCu↑(−p) = +iv↑(p), (24a)

CPu↓(−p) = −PCu↓(−p) = −iv↓(p), (24b)

CPv↑(−p) = −PCv↑(−p) = +iu↑(p), (24c)

CPv↓(−p) = −PCv↓(−p) = −iu↓(p). (24d)

Similar conclusions can be drawn in the Fock space. We define the field operator
as follows:

�(xµ) =
∑

λ

∫
d3p

(2π )3

√
m

2E

[
uλaλ e−i pµxµ + vλb†

λ e+i pµxµ]
. (25)

The commutation relations are assumed to be the standard ones (Bogoliubov and
Shirkov, 1980; Greiner, 1996; Itzykson and Zuber, 1980; Weinberg, 1995)7 (com-
pare with (Ahluwalia, 1996; Dvoeglazov, 1997a,b; Gupta, 1967))

[aλ(p), a†
λ′, (k)]+ = 2Eδ(3)(p − k)δλλ′, [aλ(p), aλ′(k)]+ = 0

= [a†
λ(p), a†

λ′(k)]+, (26a)

[aλ(p), b†
λ, (k)]+ = 0 = [bλ(p), a†

λ′(k)]+, (26b)

[bλ(p), b†
λ, (k)]+ = 2Eδ(3)(p − k)δλλ′, [bλ(p), bλ′(k)]+ = 0

= [b†
λ(p), b†

λ′(k)]+. (26c)

If one defines UP�(xµ)U−1
P = γ 0�(xµ′), UC�(xµ)U−1

C = C̃�†(xµ) and the an-
tiunitary operator of time reversal (VT �(xµ)V −1

T )† = T �†(xµ′′
), then it is easy

to obtain the corresponding transformations of the creation/annihilation operators

7 The only possible changes may be related to a different form of normalization of 4-spinors, which
would have influence on the factor before δ-function.
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(cf. the cited textbooks).

UPaλU−1
p = −ia−λ(−p), UP bλU−1

p = −ib−λ(−p), (27a)

UC aλU−1
C = (−1)

1
2 +λb−λ(p), UC bλU−1

C = (−1)
1
2 −λa−λ(−p), (27b)

As a consequence, we obtain (provided that UP |0〉 = |0〉, UC |0〉 = |0〉)
UPa†

λ(p)|0〉 = UPa†
λU−1

P |0〉 = ia†
−λ(−p)|0〉 = i | − p, −λ〉+, (28a)

UP b†
λ(p)|0〉 = UP b†

λU−1
P |0〉 = ib†

−λ(−p)|0〉 = i | − p, −λ〉−; (28b)

and

UC a†
λ(p)|0〉 = UC a†

λU−1
C |0〉 = (−1)

1
2 +λb†

−λ(p)|0〉 = (−1)
1
2 +λ|p, −λ〉−, (29a)

UC b†
λ(p)|0〉 = UC b†

λU−1
C |0〉 = (−1)

1
2 −λa†

−λ(p)|0〉 = (−1)
1
2 −λ|p, −λ〉+. (29b)

Finally, for the CP operation one should obtain:

UPUC a†
λ(p)|0〉 = −UCUPa†

λ(p)|0〉 = (−1)
1
2 +λUP b†

−λ(p)|0〉
= i(−1)

1
2 +λb†

λ(−p)|0〉 = i(−1)
1
2 +λ| − p, λ〉−, (30a)

UPUC b†
λ(p)|0〉 = −UCUP b†

λ(p) = (−1)
1
2 −λUPa†

−λ(p)|0〉
= i(−1)

1
2 −λa†

λ(−p)|0〉 = i(−1)
1
2 −λ| − p, λ〉+. (30b)

As in the classical case, the P and C operations anticommutes in the ( 1
2 , 0) ⊕ (0, 1

2 )
quantized case. This opposes to the theory based on 4-spinor eigenstates of chiral
helicity (cf. Dvoeglazov, 1997b).

Since the VT is an antiunitary operator the problem must be solved after taking
into account that in this case the c-numbers should be put outside the hermitian
conjugation without complex conjugation:[

VT λAV −1
T

]† = [
λ∗VT AV −1

T

]† = λ
[
VT A†V −1

T

]
. (31)

With this definition we obtain:8

VT a†
λV −1

T = +i(−1)
1
2 −λa†

λ(−p), (32a)

VT bλV −1
T = +i(−1)

1
2 −λbλ(−p). (32b)

Furthermore, we observed that the question of whether a particle and an
antiparticle have the same or opposite parities depend on a phase factor in the
following definition:

UP�(t , x)U−1
P = eiαγ 0�(t , −x). (33)

8 T is chosen to be T = ( � 0
0 �

) in order to fulfill T −1γ T
0 T = γ0, T −1γ T

i T = γi , and T T = −T .
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Indeed, if we repeat the textbook procedure (Greiner, 1996):

UP

[ ∑
λ

∫
d3p

(2π )3

√
m

2E

(
uλ(p) aλ(p) e−i pµxµ + vλ(p)b†

λ(p) e+i pµxµ)]
U−1

P

= eiα

[ ∑
λ

∫
d3p

(2π )3

√
m

2E

(
γ 0uλ(−p)aλ(−p) e−i pµxµ

+ γ 0vλ(−p)b†
λ(−p) e+i pµxµ)]

= eiα

[ ∑
λ

∫
d3p

(2π )3

√
m

2E

( − iu−λ(p)aλ(−p) e−i pµxµ

+ iv−λ(p)b†
λ(−p) e+i pµxµ)]

. (34)

Multiplying by uλ′(p) and vλ′(p) consequetively, and using the normalization con-
ditions we obtain

UPaλU−1
P = −i eiαa−λ(−p), (35a)

UP b†
λU−1

P = +i eiαb†
−λ(−p). (35b)

From this, if α = π/2 we obtain opposite parity properties of creation/annihilation
operators for particles and antiparticles:

UPaλU−1
P = +a−λ(−p), (36a)

UP bλU−1
P = −b−λ(−p). (36b)

However, the difference with the Dirac case still preserves (λ transforms to −λ).
As a conclusion, the question of the same (opposite) relative intrinsic parity is
intrinsically related to the phase factor in (33). We find somewhat similar situation
with the question of constructing the neutrino field operator (cf. with the Goldhaber-
Kayser creation phase factor).

Next, we find the explicit form of the parity operator UP and prove that it
commutes with the Hamiltonian operator. We prefer to use the method described
in (see above, § 10.2–10.3). It is based on the anzatz that UP = exp[iα Â] exp[i B̂]
with Â = �s

∫
d3p[a†

p,sa−ps + b†
psb−ps] and B̂ = �s

∫
d3p[βa†

p,saps + γ b†
psbps].

On using the known operator identity

eÂ B̂ e− Â = B̂ + [ Â, B̂]− + 1

2!
[ Â, [ Â, B̂]] + . . . (37)

and [ Â, B̂Ĉ]− = [ Â, B̂]+Ĉ − B̂[ Â, Ĉ]+ one can fix the parameters α, β, γ such
that satisfy the physical requirements that a Dirac particle and its anti-particle have
opposite intrinsic parities.
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In our case, we need to satisfy (27a), i.e., the operator should invert not only
the sign of the momentum, but the sign of the helicity too. We may achieve this
goal by the analogous postulate UP = eiα Â with

Â =
∑

s

∫
d3p
2E

[a†
λ(p)a−λ(−p) + b†

λ(p)b−λ(−p)]. (38)

By direct verification, the Eqs. (27a) are satisfied provided that α = π/2. Compare
this parity operator with that given in (Greiner, 1996; Itzykson and Zuber, 1980)
for Dirac fields:9

UP = exp

[
i
π

2

∫
d3p

∑
s

(a(p, s)†a(p̃, s) + b(p, s)†b(p̃, s)

− a(p, s)†a(p, s) + b(p, s)†b(p, s))

]
, (10.69) of Greiner (1996). (39)

By direct verification one can also come to the conclusion that our new UP com-
mutes with the Hamiltonian:

H =
∫

d3x�00 =
∫

d3k
∑

λ

[a†
λ(k)aλ(k) − bλ(k)b†

λ(k)], (40)

i.e.
[UP , H] = 0. (41)

Alternatively, we can try to choose another set of commutation relations
(Ahluwalia, 1996; Dvoeglazov, 1997b) (for the set of bi-orthonormal states), that
will be the matter of future publications.

Finally, because of the fact that my recent works are related to the so-called
“Bargmann-Wightman-Wigner-type” quantum field theory, I want to clarify some
misunderstandings in the recent discussions. This type of theories has been first
proposed by Gel’fand and Tsetlin (Gel’fand and Tsetlin, 1956). In fact, it is based
on the two-dimensional representation of the inversion group, which is used when
someone needs to construct a theory where C and P anticommute. They indi-
cated applicability of this theory to the description of the set of K-mesons and
possible relations to the Lee-Yang result. The comutativity/anticommutativity of
the discrete symmetry operations has also been investigated by Foldy and Nigam
(Nigam and Foldy, 1956). Relations of the Gel’fand–Tsetlin construct to the rep-
resentations of the anti-de Sitter SO(3, 2) group and the general relativity the-
ory (including continuous and discrete transformations) have been discussed in

9 Greiner used the following commutation relations [a(p, s), a†(p′, s′)]+ = [b(p, s), b†(p′, s′)]+ =
δ3(p − p′)δss′ . One should also note that the Greiner form of the parity operator is not the only one.
Itzykson and Zuber (Itzykson and Zuber, 1980) proposed another one differing by the phase factors
from (10.69) of (Greiner, 1996). To find relations between those two forms of the parity operator one
should apply additional rotation in the Fock space.



Helicity Basis and Parity 1297

(Sokolik, 1957) and in subsequent papers of Sokolik. E. Wigner (Wigner, 1964)
presented somewhat related results at the Istanbul School on Theoretical Physics
in 1962. Later, Fushchich discussed corresponding wave equations. At last, in the
paper (Ahluwalia et al., 1993; Dvoeglazov, 1998) the authors called a theory where
a boson and its antiboson have opposite intrinsic parities as the theory of “the
Bargmann–Wightman–Wigner type.” Actually, the theory presented by Ahluwalia,
Goldman, and Johnson is the Dirac-like generalization of the Weinberg 2(2J + 1)-
theory for the spin 1. It has already been presented in the Sankaranarayanan and
Good paper of 1965 (Sankaranarayanan and Good, 1965). In Dvoeglazov (1998)
(and in the previous IF-UNAM preprints of 1994) I presented a theory based on
a set of 6-component Weinberg-like equations (I called them the “Weinberg dou-
bles”). In Ahluwalia (1996) the theory in the ( 1

2 , 0) ⊕ (0, 1
2 ) representation based

on the chiral helicity 4-eigenspinors was proposed. The connection with the Foldy
and Nigam consideration has been claimed. The corresponding equations have
been obtained in (Dvoeglazov, 1997b) and in several less known papers. How-
ever, later we found the papers by Ziino and Barut (Barut and Ziino, 1993; Ziino,
1989, 1991, 1996) and the Markov papers (Markov, 1937, 1964), which also have
connections with the subject under consideration.

A similar theory may be constructed from our consideration above if we
define the field operators as follows:

�1 =
∫

d3p
(2π )3

√
m

2E
[(u↑a↑ + v↑b↑) e−i pµxµ + (u↑a†

↑ + v↑b†
↑) e+i pµxµ

], (42a)

�2 =
∫

d3p
(2π )3

√
m

2E
[(u↓a↓ − v↓b↓) e−i pµxµ + (u↓a†

↓ − v↓b†
↓) e+i pµxµ

]. (42b)

The conclusions of my talk are

• Similarly to the ( 1
2 , 1

2 ) representation, the ( 1
2 , 0) ⊕ (0, 1

2 ) field functions in
the helicity basis are not eigenstates of the common-used parity operator;
|p, λ >⇒ | − p, −λ > both on the classical and quantum levels. This is
in accordance with the earlier consideration of Berestetskiı̆, Lifshitz, and
Pitaevskiı̆.

• Helicity field functions may satisfy the ordinary Dirac equation with γ s
to be in the spinorial representation. Meanwhile, the chiral helicity field
functions satisfy the equations of the form p̂�1 − m�2 = 0.

• Helicity field functions can be expanded in the set of the Dirac 4-spinors by
means of the matrix U−1 given in this paper. Neither A, nor B are unitary,
however A†A + B†B = 11.

• P and C operations anticommute in this framework, both on the classical
and quantum levels (this is opposite to the theory based on the chiral helicity
eigenstates (Dvoeglazov, 1997b).
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• Particle and antiparticle may have either the same or the opposite properties
with respect to parity. The answer depends on the choice of the phase
factor in UP�U−1

P = eiαγ 0� ′; alternatively, that can be made by additional
rotation UP2 .

• Earlier confusions in the discussion of the Gelfand–Tsetlin–Sokolik–
Nigam–Foldy–Bargmann–Wightman–Wigner-type (GTsS-NF-BWW) qu-
antum field theory have been clarified.
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